
Reps et al. 
Diagnostic and Prognostic Research            (2025) 9:10  
https://doi.org/10.1186/s41512-025-00191-x

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Diagnostic and
Prognostic Research

Can we develop real-world prognostic 
models using observational healthcare data? 
Large-scale experiment to investigate model 
sensitivity to database and phenotypes
Jenna M. Reps1,2*, Peter R. Rijnbeek2 and Patrick B. Ryan1 

Abstract 

Background  Large observational healthcare databases are frequently used to develop models to be implemented 
in real-world clinical practice populations. For example, these databases were used to develop COVID severity models 
that guided interventions such as who to prioritize vaccinating during the pandemic. However, the clinical setting 
and observational databases often differ in the types of patients (case mix), and it is a nontrivial process to iden-
tify patients with medical conditions (phenotyping) in these databases. In this study, we investigate how sensitive 
a model’s performance is to the choice of development database, population, and outcome phenotype.

Methods  We developed > 450 different logistic regression models for nine prediction tasks across seven databases 
with a range of suitable population and outcome phenotypes. Performance stability within tasks was calculated 
by applying each model to data created by permuting the database, population, or outcome phenotype. We investi-
gate performance (AUROC, scaled Brier, and calibration-in-the-large) stability and individual risk estimate stability.

Results  In general, changing the outcome definitions or population phenotype made little impact on the model 
validation discrimination. However, validation discrimination was unstable when the database changed. Calibration 
and Brier performance were unstable when the population, outcome definition, or database changed. This may be 
problematic if a model developed using observational data is implemented in a real-world setting.

Conclusions  These results highlight the importance of validating a model developed using observational data 
in the clinical setting prior to using it for decision-making. Calibration and Brier score should be evaluated to prevent 
miscalibrated risk estimates being used to aid clinical decisions.

Introduction
Large observational healthcare databases, such as insur-
ance claims data or electronic healthcare data, can be 
used to develop health prediction models that get imple-
mented in various real-world settings [1]. For example, 
QRISK is a model that was trained using data from a sub-
set of primary care practices in the UK. The model pre-
dicts 10-year risk of cardiovascular disease and has been 
implemented in the UK to identify patients who may 
benefit from risk-lowering interventions such as initiat-
ing statins [2]. The Revised Cardiac Risk Index (RCRI) is 
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a model that is commonly applied preoperatively to esti-
mate the perioperative risk of cardiovascular complica-
tions [3]. Recently, when the COVID pandemic started, 
researchers used these databases to develop models 
to identify which patients were at highest risk of serve 
COVID outcomes [4–6]. These COVID models were 
developed using observational data, but the aim was 
often to apply the models in clinical settings to identify 
which patients should have been prioritized a COVID 
vaccination or other forms of intervention [7].

Targeted validation is a term that represents validating 
a model in the intended setting [8]. This is an important 
consideration for models developed using observational 
healthcare data that will be implemented in real-world 
clinical settings. Observational healthcare databases 
may not contain a representative sample of the intended 
clinical population (i.e., if a model is developed using 
US insurance claims data that includes patients who are 
commercially employed, these patients are likely to be 
younger and healthier than the average US population). 
In addition, it is not always clear how to identify patients 
with medical conditions in observational healthcare data 
(rule-based criteria are often used, but these are subjec-
tive, and chart review to assess accuracy is not always 
feasible in claims data). When a model developed using 
observational healthcare data is transported into a clini-
cal setting, the model performance can be impacted by 
numerous factors including (i) change in patient case 
mix, (ii) missing predictors, (iii) predictors that have dif-
ferent meaning, (iv) change in implementation timing 
(e.g., applying the model at the first visit of the year vs 
at the first record of some medical condition), (v) out-
come difference (i.e., the model was developed using 
patients with more or less severe outcomes, or there was 
differential measurement error in the outcome between 
the training data and targeted application). Prior studies 
have shown a deterioration in performance when models 
are transported across databases [9]. However, there has 
been a lack of research into the impact that these differ-
ent factors, and their interactions, have on transported 
model performance.

In particular, there has been little research into how 
much the population and outcome definitions impact a 
model’s performance stability. A large amount of work is 
often required by researchers to develop rule-based cri-
teria or models that aim to identify patients with medical 
conditions of interest in observation healthcare datasets 
[10]. This process is known as phenotyping, and the defi-
nition is referred to as a phenotype definition. For exam-
ple, Cai et al. used the rule-based phenotype of having a 
diagnosis ICD- 9 code: 410.XX in the primary position 
during an inpatient visit for identifying acute myocar-
dial infarction [11]. However, it is common for different 

researchers to use different phenotype definitions for the 
same medical condition, as seen for acute myocardial 
infarction [12]. It is of interest to determine how sensi-
tive a prediction model is to the choice of population 
and outcome phenotype. If a model’s performance varies 
substantially based on these choices, then extensive work 
needs to be performed to ensure accurate phenotypes, 
which match the intended target population, are used.

In this study, we develop and validate prediction mod-
els for nine prediction tasks across seven observational 
databases, three populations with different prediction 
indexes, and three to four outcome definitions per task 
to investigate model stability. We investigate stability by 
permuting the database, population, and/or outcome 
definition. Stability is investigated in terms of overall per-
formance metrics (discrimination, calibration, and Brier 
score) and individual predicted risks [13]. This serves as a 
proxy for how stable model performance may be between 
the development database performance and targeted 
validation performance. It will provide insight into the 
impact that choice of development database, incorrectly 
defining populations or using noisy outcomes, has on 
model stability.

Methods
Aims
We aim to investigate how stable model performance is 
when there is a change to the following:

1)	 The population (e.g., the model is developed using 
a development population consisting of patients 
with an outpatient visit in 2017, index is first visit, 
and then the model is validated using a population 
of patients observed in the database during 2017, 
but index is Jan 1, 2017). Changing the population 
impacts case mix and implementation timing.

2)	 The outcome definition (e.g., the model is developed 
using rule-based criteria to identify acute myocardial 
infarction that consists of a patient having a single 
code representing acute myocardial infarction but is 
applied using rule-based criteria requiring a patient 
to have a single code representing acute myocardial 
infarction during an inpatient visit). Changing the 
outcome definition impacts the outcome measure-
ment error.

3)	 The development database (e.g., the model is devel-
oped in database 1 and validated in database 2). 
Changing the database impacts the case mix, the pre-
diction meaning, and which predictors are available.

4)	 The population, outcome definition, and/or database 
to investigate the interaction between these factors 
on model stability.
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We will measure model stability using previously 
defined stability levels: level 1 (comparing change in per-
formance metrics) and level 4 (comparing changes in 
individual risk estimates for a selection of patients) [13].

Data
We use seven observational databases in this study. All 
databases are converted into the Observational Medical 
Outcomes Partnership (OMOP) common data model 
(CDM) format [14] that use standardized vocabularies 
for recording medical events. Full database details are 
available in Table 1.

The use of JMDC, IQVIA, Merative MarketScan®, and 
Optum databases were reviewed by the New England 
Institutional Review Board and were determined to be 
exempt from broad Institutional Review Board approval.

Prediction task
In this study, we follow the proposed prediction frame-
work by Reps et al. [15].

To determine how stable model performance is, we 
focus on the prediction tasks of developing models that 
predict various COVID- 19 vaccine outcomes of interest 
listed by the US Food and Drug Administration (FDA) for 
the general population (as vaccines are available for every 
adult in the USA). We chose these tasks as the prediction 
models need to be valid for the whole adult population, 
but this makes the choice of development population and 
database unclear. We chose a population of non-COVID 
vaccine users since when these models would have been 
useful, there would have been little data on COVID vacci-
nations in observational data. Using a proxy target popu-
lation was common at the beginning of the pandemic [5].

We chose three realistic (researchers may use them) 
populations for the tasks:

1)	 Patients with a recorded healthcare visit in 2017 with 
365 days or more observation time in the database 
prior to the visit. Index was the first of these visits 

per patient. This population is suitable if the model 
would be applied during a patient’s first healthcare 
interaction in any year.

2)	 Patients with a recorded influenza vaccine in 2017 
with 365 days or more observation time in the data-
base prior to the influenza vaccine. Index was vaccine 
date. This population is suitable if the model would 
be applied when a patient is vaccinated each year.

3)	 Patients observed in the database during 2017 with 
365 days or more observation time in the database 
prior to Jan 1, 2017. Index was Jan 1, 2017. This 
population is suitable if the model would be applied 
every year on the 1 st of January.

We restricted to the year 2017 to avoid using data from 
2019 onwards as this was impacted by the pandemic. As 
some of the populations were large, we took a random 
sample of 2 million patients when the population was 
greater than 2 million patients.

We focus on nine prediction tasks, specifically pre-
dicting the first-time occurrence of nine outcomes from 
1 day until 365 days after index. The nine outcomes were 
as follows: acute myocardial infarction (acute MI), ana-
phylaxis, appendicitis, disseminated intravascular coagu-
lation (disintracoag), encephalomyelitis, Guillain–Barre 
syndrome, hemorrhagic stroke, nonhemorrhagic stroke, 
and pulmonary embolism. These outcomes were cho-
sen as they have been identified as COVID- 19 vaccine 
outcomes of interest by the FDA, and we wanted to see 
whether observational healthcare databases could be 
used to predict these outcomes for the general popu-
lation. For each prediction task, we developed models 
using three different outcome phenotype definitions 
(except nonhemorrhagic stroke that had four). In gen-
eral, the first phenotype was a standardized definition 
that looked for at least one occurrence of a diagnosis 
code corresponding to the clinical idea, as defined by 
the OHDSI standardized vocabularies. The second phe-
notype identified outcomes based on occurrence of a 

Table 1  The databases used in this study

Database full name Database short name Type Size 
(million 
patients)

Merative Commercial Claims and Encounters CCAE US insurance claims 173

IQVIA Disease Analyzer — Germany IQVIA_Germany German primary care 33

Japan Medical Data Center JMDC Japanese insurance claims 19

Merative Medicaid MDCD US insurance claims 37

Merative Medicare Supplemental Beneficiaries MDCR US insurance claims 11

Optum® De-Identified Clinformatics® Data Mart Database Optum Clinformatics® US insurance claims 101

Optum® De-identified Electronic Health Record Dataset Optum® EHR US electronic healthcare data 115
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diagnosis code within an inpatient visit. The third pheno-
type definitions were based on a narrower set of diagno-
sis codes derived from ICD-based code lists. The fourth 
nonhemorrhagic stroke phenotype used a broader set of 
diagnosis codes. Full details of the definitions are avail-
able in Supplementary section A.

Right censoring can occur as we are using retrospec-
tively collected observational data to develop the mod-
els using a cohort design. This is when patients are not 
observed for the full 1-year follow-up. In this study, we 
included patients who were only partially observed for 
the 1-year follow-up based on a prior study [16]. It was 
shown that a small amount of class label noise is better 
than introducing bias by removing patients with uncer-
tain class labels.

Predictors
Candidate predictors were constructed using one-hot 
encoding for any medical code, drug code, procedure 
code, measurement code, or observation code recorded 
in the database. In addition, age in 5-year buckets (e.g., 
0–4, 5–9, 10–14) and gender were also included. In 
total, over 19,000 candidate predictors were used in 

this study, but this number varied by database. These 
predictors have been used in prior studies and result in 
better-performing models than using a small number of 
prespecified predictors when developing LASSO logistic 
regression models [17].

Model development
We developed models for each combination of database, 
population, and outcome definition per prediction task. 
For each model, we trained a LASSO logistic regression 
model [18] using threefold cross validation with the train 
data (75% of the data) to pick the optimal regularization 
hyper-parameter. Three-fold cross validation has been 
shown sufficient for big data [19]. Using the optimal 
hyper-parameter value, the hyper-parameter that maxi-
mized the likelihood, the final model was fit using all the 
train data. The test data (remaining 25% of the data) was 
used to internally validate the model.

Validation
Validation of each model was performed by applying the 
model to all test datasets for the same prediction task 

Fig. 1  Heatmap showing the number of outcomes in each dataset used to develop the models. Each cell corresponds to a dataset created 
with a database, population, and outcome definition combination. The cell values correspond to the number of patients in the dataset 
with the outcome during the time at risk. Approximately half of the datasets had > = 1000 patients with the outcome. IP, inpatient visit; FDA, Food 
and Drug Administration; IPED, inpatient or emergency department visit
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(permuting databases, populations, and/or outcome 
definitions). This corresponded to each model being 
validated > 50 times (7 databases × 3 populations × 3 out-
come definitions).

Performance metrics
Performance was evaluated using the area under the 
receiver operating curve (AUROC) [20], area under 
the precision recall curve (AUPRC), scaled Brier score, 
and calibration-in-the-large ratio (mean predicted risk 
divided by mean observed risk). The AUROC is a meas-
ure of discrimination that corresponds to the probability 
that a randomly selected patient who had the outcome in 
the year after index will be assigned a higher risk by the 
model than a randomly select patient who did not have 
the outcome. An AUROC of 0.5 corresponds to ran-
domly assigning risk, and an AUROC of 1 corresponds 
to a model that can perfectly discriminate between those 
who will experience the outcome vs those who will not. 
AUPRC is another measure of discrimination but is pre-
ferred over the AUROC when the outcome is rare. The 
scaled Brier score is a measure of prediction accuracy. It 
corresponds to 1 minus the Brier score (mean squared 
error) divided by the Brier score for a model that predicts 
the mean observed risk. The calibration-in-the-large ratio 
provides insight into the model calibration on average.

Stability performance
To assess performance stability (level 1), we applied all 
models developed for the task of interest (e.g., nonhem-
orrhagic stroke) to each test dataset for this task (all 
combinations of database, population, and outcome defi-
nition). We then compare the performance of the model 
developed using the test dataset (internal performance) 
with the “stability” performances of all the other mod-
els developed with different datasets for the task. We 
then plot the internal performance against the stability 
performances to visualize how stable the performances 
are across choice of database, population, and outcome 
definition.

To assess individual risk stability (level 4) we calcu-
lated the mean absolute predictor error (MAPE). The per 
patient MAPE is calculated as the mean absolute differ-
ence between the original model (model developed on the 
same dataset that the patient is from) predicted risk for 
the patient and the sensitivity models’ (models developed 
on data where the database, population, and/or outcome 
definition was permuted) predicted risks for the patient. 
We then calculate the average MAPE across all patients in 
the test set. We plot the original model prediction against 
other predictions obtained from the sensitivity models 
(prediction instability plot) and the original model predic-
tion against the MAPE (MAPE instability plot).

Fig. 2  Internal AUROC vs stability AUROC when the models are developed and validated in the same database (top three rows) or different 
database (bottom four rows). The columns “ > = 1000 Outcomes,” “ > = 500 Outcomes,” and “All results” represent only including models 
and validations where the dataset contained > = 1000 patients with the outcome, only including models and validations where the dataset 
contained > = 500 patients with the outcome, and all models and validations, respectively. Each row corresponds to a different validation data 
permutation compared to the model development data (e.g., the population, outcome definition, and/or the database is changed)
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The code to perform the analyses is available at 
https://​github.​com/​ohdsi-​studi​es/​Covid​19Vac​cineP​
redic​tion and readily implementable on any data 
mapped to the OMOP common data model.

Results and discussion
The number of outcomes within the population varied 
by database and outcome definition (see Fig.  1). Most 
datasets contain approximately 2 million patients, see 
Supplementary B: Fig. 1. Guillain–Barre syndrome and 
encephalomyelitis were the rarest outcomes investi-
gated, with many databases containing less than 100 
patients with the outcome. The cardiovascular out-
comes were generally the most common with most 
databases and outcome definitions containing more 
than 1000 patients with the outcome, which is the num-
ber that the LASSO logistic regression performance 
often starts to stabilize [21]. Four-hundred seventy-five 
models were developed, and internal discriminative 
performance across these models varied (see Supple-
ment C). Comparing train AUROC and test AUROC 
indicates most models were not overfit (see Supplement 

C). A total of 237 (49.9%) models were developed using 
data with > 1000 patients with the outcome. We focus 
on results corresponding to the 237 models (and valida-
tions in the 237 datasets with > = 1000 patient with the 
outcome) as these models were less likely to be overfit 
and the validation performance point estimates will be 
more stable.

Figures 2, 3 and 4 show the AUROC stability, calibra-
tion stability, and Brier score stability, respectively, when 
the population, outcome definition, or both are changed 
between model development and validation. The bottom 
four rows correspond to when the model development 
and validation had a different database (colored red), 
and the top three rows correspond to when the model 
development and validation were on the same data-
base (colored blue). AUPRC showed a similar trend to 
AUROC (see Supplement D).

Figures 5 and 6 illustrate the individual prediction risk 
stability. Figure 5 shows that overall changing the popu-
lation, outcome definition, and/or database can result in 
very unstable individual prediction risk estimates as there 
was large variance in the predicted risks per patient. 

Fig. 3  Internal calibration-in-the-large ratio (mean predicted risk divided by mean observed risk) vs stability calibration-in-the-large ratio 
when the models are developed and validated in the same database (top three rows) or different database (bottom four rows). The columns “ > 
= 1000 Outcomes,” “ > = 500 Outcomes,” and “All results” represent only including models and validations where the dataset contained > = 1000 
patients with the outcome, only including models and validations where the dataset contained > = 500 patients with the outcome, and all models 
and validations, respectively. Each row corresponds to a different validation data permutation compared to the model development data (e.g., 
the population, outcome definition, and/or the database is changed)

https://github.com/ohdsi-studies/Covid19VaccinePrediction
https://github.com/ohdsi-studies/Covid19VaccinePrediction
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Figure  6 shows the MAPE is generally higher when the 
development and validation databases differed, but there 
was still instability in individual risk estimates when only 
the population or outcome definition differed.

Changing population
Figure  2 shows that the AUROC was generally stable 
when only the population was changed as the row corre-
sponding to “Population change (same database)” shows 
the dots are on or near the x = y line when the database 
was consistent. However, changing the population and 
database can result in unstable AUROC (the dots on the 
row “Database and population change” were sometimes 
far from the x = y line). The AUPRC had a similar trend 
to the AUROC (see Supplement D). Interestingly, the 
scaled Brier score, the calibration-in-the-large ratio, and 
the individual predicted risks were unstable when only 
the population changed and even more unstable when 
the population and database changed.

The results suggest that discrimination, which often 
focuses on how well the model ranks patients based on 
risk, is only moderately impacted when there is only a 

change in population between model development and 
validation. However, the actual predicted risk value is 
unstable. It may be possible to improve predicted risk 
value stability by recalibrating the model in the dataset 
the model is transported into.

Changing outcome definition
Figure  2 shows that the AUROC was generally sta-
ble when only the outcome definition was changed as 
the dots fall on or near the x = y line for the row “Out-
come change (same database).” However, changing the 
outcome definition and database can result in unstable 
AUROC (as the dots were sometimes far from the x = y 
line for the row “Database and outcome change”). The 
AUPRC had a similar trend to the AUROC (see Supple-
ment D). Interestingly, the scaled Brier score, the calibra-
tion-in-the-large ratio, and the individual predicted risks 
were unstable when only the outcome changed and even 
more unstable when the outcome and database changed. 
Changing the outcome definition had a similar impact to 
changing the population.

Fig. 4  Internal scaled Brier score vs stability scaled Brier score when the models are developed and validated in the same database (top three rows) 
or different database (bottom four rows). The columns “ > = 1000 Outcomes,” “ > = 500 Outcomes,” and “All results” represent only including models 
and validations where the dataset contained > = 1000 patients with the outcome, only including models and validations where the dataset 
contained > = 500 patients with the outcome, and all models and validations, respectively. Each row corresponds to a different validation data 
permutation compared to the model development data (e.g., the population, outcome definition, and/or the database is changed)
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Changing database
Figures  3, 4, and 5 show that when the database was 
changed, all performance metrics were unstable as the 
red dots did not fall on or near the x = y line for the rows 
indicating the database was changed. Changing the data-
base appears to have the greatest impact on model per-
formance stability across all metrics and individual risk 
predictions.

Changing population, outcome definition, and/
or database
AUROC and AUPRC were stable across changing the 
population and outcome definition. The accuracy metrics 
such as scaled Brier score and calibration-in-the-large 
were unstable. Individual risks were also unstable. Any 
change that included changing the database led to highly 
unstable performance metric results and individual pre-
dicted risk results.

In summary, we see that models are unstable, both in 
terms of population-level performance and individual-
level predicted risk, when implemented in a new data-
base. If only the population and outcome definitions are 
changed, the discriminative performance is stable, but 
other metrics and individual risks are unstable. Given 
this information, we highlight the importance of targeted 

validation, where a model developed in observational 
data is tested in the clinical setting it will be implemented 
in prior to use, as the model may perform much worse, 
which potentially could cause harm. In addition, recali-
bration in the target setting may be required.

Limitations
For the population sensitivity, the index date dif-
fered (Jan 1 st, random visit, influenza date), but some 
patients may overlap between the populations when the 
model was developed and validated in the same data-
base. Therefore, there may be correlations between the 
patients used to develop the model and the patients 
used to validate the model when assessing stability. This 
may make the models appear more stable.

In this study we only investigated three population 
cohorts. The results may not hold for different popu-
lations. In addition, we only considered 3–4 outcome 
definitions per prediction task, and the definitions 
used were developed carefully. The result that the dis-
crimination performances are often stable across slight 
changes to the outcome definition may not hold if a 
highly inaccurate outcome definition is used to develop 
a model.

Fig. 5  Prediction instability plot showing the stability predictions (of models developed using a different population, outcome definition, and/
or database) against the internal prediction for a random selection of 100 patients per test set
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The results show that the performances were more 
unstable when including models developed using data 
with a low number of patients with the outcome and 
including validations in data where there was low num-
ber of patients with the outcome. It is unclear whether 
this is due to unstable point estimates or unstable mod-
els. However, we presented models and validations that 
used data with > 1000 patients with the outcome sepa-
rately to try and minimize the impact of model overfit-
ting and point estimate instability on stability insights.

In this study, we developed generalized linear models 
that did not include interaction terms. It is possible to 
develop models that work well across case mixes by add-
ing suitable interaction terms. Future work could repli-
cate this study but include age/sex interaction terms to 
see whether the performance and individual risks are 
more stable across databases when interactions are used.

Finally, we did not perform any form of recalibration 
using the validation data. Miscalibration could be fixed 
by recalibrating using some of the validation data. This 
may lead to more stable Brier score, calibration, and 
individual risk estimates. Future work could investigate 

recalibrating the models to see whether that improves 
stability.

Conclusion
This study investigated the impact that changing the data-
base or population or outcome definition has on predic-
tion performance and individual risk estimates. This is 
important if researchers are aiming to develop models 
using a single database that would be applied outside the 
database setting (e.g., in a real-world clinical population). 
The results show that small changes in the outcome defini-
tion are unlikely to have a large impact on the discrimina-
tive performance. This is important as outcome phenotype 
definitions are likely to have measurement error in obser-
vational data. Surprisingly, the discrimination perfor-
mances were generally robust across different populations 
and index dates in this study (first visit, influenza vaccine 
visit, or random visit) but were unstable when the database 
changed. Calibration and Brier score appear to be unstable 
across changes to the outcome definition, population, and 
database. This highlights the need to recalibrate models 
when they are transported into new patient populations. 

Fig. 6  MAPE instability plot when applying models that (1) have a change in population, outcome, and/or database, (ii) models that only have 
a change in population between development and validation, (iii) models that only have a change in outcome definition between development 
and validation, and (iv) models that only have a change in database between development and validation. These plots used a randomly selected 
100 patients from each test set
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Model performance was also more unstable when the 
outcome is rare (< 1000 patients with the outcomes in the 
data). We therefore recommend, in agreement with other 
publications [8], that researchers validate any model in 
the clinical setting it will be applied to prior to using it for 
decision-making. In addition, we suggest a performance 
sensitivity analysis is implemented investigating different 
population definitions and outcome definitions if a model 
is developed in a database where the outcome occurs in 
less than 1000 patients (i.e., the outcome is rare).
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