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Abstract 

Background Many chronic conditions, such as epilepsy and asthma, are typified by recurrent events—repeated 
acute deterioration events of a similar type. Statistical models for these conditions often focus on evaluating the time 
to the first event. They therefore do not make use of data available on all events. Statistical models for recurrent events 
exist, but it is not clear how best to evaluate their performance. We compare the relative performance of statistical 
models for analysing recurrent events for epilepsy and asthma.

Methods We studied two clinical exemplars of common and infrequent events: asthma exacerbations using 
the Optimum Patient Clinical Research Database, and epileptic seizures using data from the Standard versus New 
Antiepileptic Drug Study. In both cases, count-based models (negative binomial and zero-inflated negative bino-
mial) and variants on the Cox model (Andersen-Gill and Prentice, Williams and Peterson) were used to assess the risk 
of recurrence (of exacerbations or seizures respectively). Performance of models was evaluated via numerical (root 
mean square prediction error, mean absolute prediction error, and prediction bias) and graphical (calibration plots 
and Bland–Altman plots) approaches.

Results The performance of the prediction models for asthma and epilepsy recurrent events could be evaluated 
via the selected numerical and graphical measures. For both the asthma and epilepsy exemplars, the Prentice, Wil-
liams and Peterson model showed the closest agreement between predicted and observed outcomes.

Conclusion Inappropriate models can lead to incorrect conclusions which disadvantage patients. Therefore, predic-
tion models for outcomes associated with chronic conditions should include all repeated events. Such models can be 
evaluated via the promoted numerical and graphical approaches alongside modified calibration measures.
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Background
People with long-term, chronic, medical conditions 
often have repeated acute deteriorations of a simi-
lar type, such as seizures in epilepsy, exacerbations in 
asthma, or flares of inflammatory bowel disease. These 
recurrent events are the major drivers of morbidity 
and mortality for these conditions. They also lead to 
substantial healthcare costs and drive indirect costs 
such as loss of income. When these events are stud-
ied, researchers usually only include counts of events 
that occur prior to treatment or prior to a change in 
treatment for example. Consequently, they do not use 
all the available event information [1]. Although ran-
domised controlled trials and observational studies 
for chronic conditions usually collect considerable 
information about individuals’ event patterns over a 
period of time, frequently these studies are focussed 
on time-to-event outcomes such as the standard inter-
nationally recognised outcomes in epilepsy of time 
to 12-month remission and time-to-treatment failure 
[2]. This means a further loss of important temporal 
information.

Statistical models can estimate future events for an 
individual, conditional on their values of multiple pre-
dictors (prognostic or risk factors) such as age, sex and 
biomarkers [3]. Many such models (prognostic predic-
tion models) are published in the medical literature 
each year [4], and they are usually developed using a 
regression framework such as logistic or Cox models.

Recurrent event models, alongside dynamic and 
joint prediction models, are increasingly being devel-
oped to estimate the chances of a particular outcome 
for relevant individuals over a prolonged horizon of 
opportunity. However, infrequent events and com-
mon events might require different models, for exam-
ple people with asthma tend to have a lower event rate 
than those with epilepsy and thus different models 
might be required.

Model performance of prediction models is tradi-
tionally assessed using discrimination and calibra-
tion [5]. Calibration refers to an agreement between 
observed outcomes and predictions. Discrimination 
refers to the ability of the prognostic model to differ-
entiate between those who experience the event dur-
ing the study and those who do not [5]. Whilst it is 
known that the discrimination and calibration of any 
prediction model should be assessed prior to use in 
clinical practice [5], is it not clear how to best evalu-
ate the statistical performance of statistical models for 
recurrent events. This manuscript therefore compares 
the relative performance of statistical models for ana-
lysing recurrent events for epilepsy and asthma.

Methods
Asthma and epilepsy are used as exemplars with less 
frequent and more frequent event rates respectively. R 
4.4.0. statistical software has been used throughout [6].

Datasets
Asthma
The Optimum Patient Care Research Database 
(OPCRD) comprises anonymous data from over 600 
UK general practices across England, Scotland, Wales 
and Northern Ireland and was approved for clini-
cal research by the Health Research Authority of the 
UK NHS (REC reference: 15/EM/0150). The study 
population consisted of all patients aged 12–80 with a 
Read code for an asthma diagnosis prior to the study 
start who were registered with a GP during the study 
period. Only patients prescribed regular asthma treat-
ment on more than one occasion (i.e. not short-acting 
bronchodilator alone) were included in the study pop-
ulation for those with active asthma. Exclusion crite-
ria were a COPD diagnostic Read code at any time, a 
Read code for resolved asthma during the study, or less 
than 3 years of data. The data comprise three consecu-
tive yearlong observation windows. Data was collated 
between 2005 and 2013, with patients entering the 
study either at study commencement (1st January 2005) 
or the first point thereafter when they joined a prac-
tice participating in OPCRD, or their practice joined 
OPCRD.

The primary endpoint of asthma exacerbation was 
defined in accordance with European Respiratory Soci-
ety/American Thoracic Society criteria [7], namely an 
asthma-related hospitalisation, emergency department 
(ED) attendance, or an acute respiratory presentation 
resulting in a course of oral corticosteroids (OCS). 
Events within 2 weeks were assumed lack of resolution 
of the initial exacerbation.

Epilepsy
Full details of the Standard Versus New Antiepilep-
tic Drug (SANAD) studies are available in the original 
trial reports [8, 9]. Arm A studied focal epilepsy whilst 
Arm B considered generalised epilepsy. In brief, people 
qualified for randomisation into Arm B of the SANAD 
study if they had a history of two or more clinically def-
inite unprovoked epileptic seizures in the previous year, 
and if the recruiting clinician regarded valproate as the 
better standard treatment option than carbamazepine. 
Participants were randomly allocated in a 1:1:1 ratio to 
valproate, lamotrigine or topiramate between January 
12, 1999 and August 31, 2004. The two primary out-
comes in SANAD were time to treatment failure and 
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time to the first period of 12-month remission from 
seizures, both originally modelled using Cox’s propor-
tional hazards model.

During the study period, 702 people were randomised 
yielding 104,839 post-randomisation seizures. As com-
mon in clinical practice, 30% (212) of participants had no 
further seizures during the observation period. This anal-
ysis involves 702 participants although predicted counts 
at 2 years after randomisation are based on the subset of 
509 participants who have follow-up data, or a date of 
loss to follow-up, recorded during this period.

Statistical models
Methods for the fitting count and rate-based models, as 
well as multiple time-to-event models such as Andersen-
Gill (AG) and Prentice, Williams and Peterson (PWP) 
models, can be found within the literature (e.g. [10, 11]). 
The AG and PWP models consider the time between 
exacerbations and were fitted using the coxph function 
from within the survival package in R [12]. The nega-
tive binomial and zero-inflated negative binomial models 
consider exacerbation counts and were fitted using the 
glm.nb and glm functions within the stats package in R 
[6]. All four models were fitted to data from each study. 
Both the AG and PWP models were fitted with robust 
standard errors via a jackknife estimate [13]. The total 
time variant of the PWP model was selected for both 
examples as this considers the individual’s total time in 
the study rather than just the time between events [11].

The asthma model included gender, age, presence of 
previous exacerbations, smoking status and year of entry 
into the study. This choice was based on known prog-
nostic factors for asthma [14, 15]. The epilepsy models 
included gender, first-degree relative with epilepsy, age at 
randomisation, and annual rate of tonic–clonic seizures 
prior to randomisation. Again, known prognostic fac-
tors for epilepsy were used [16]. Treatment was forced 
into each epilepsy model as all patients were treated at 
randomisation. Additionally, to draw in the extreme tail 
of the seizure counts, the total number of seizures per 
patient has been capped at 2100, the 99% quantile of 
all the per-person seizure counts, as recommended by 
Royston et al. [17].

Continuous covariates were assessed for best fit via log 
or linear transformations and the most frequently used 
transformation (log) was applied across all models to aid 
comparison. Fractional polynomials are recommended 
[18], but the methodology is not currently adapted to 
recurrent events.

Model performance methods
In the absence of discrimination and calibration methods 
for recurrent event models, it is necessary to consider 

alternative ways to evaluate model performance. There-
fore, in each case, model fit was assessed via numerical 
and graphical measures.

Numerical measures
Model fit was assessed via the root mean squared pre-
diction error (RMSPE), mean absolute prediction error 
(MAPE) and prediction bias. All three approaches com-
pare predicted and observed event counts obtained from 
the models. In all cases, smaller absolute values corre-
spond to a better model [19]. Formulae for these statistics 
can be found in Appendix 1 and were manually coded in 
R.

Graphical measures
Calibration plots
Calibration refers to how closely the probability of the 
event predicted by the model agrees with the observed 
probability of the event within the dataset and can be 
assessed graphically [20]. As event probabilities are 
meaningless for the prediction models built using vari-
ants on the Cox model, observed event counts were 
shown on the x-axis and predicted event counts on the 
y-axis. Calibration plots were manually drawn in R.

Bland–Altman plots
Bland–Altman plots are scatter plots, in which the y-axis 
shows the difference between the predicted and observed 
event count, and the x-axis represents the mean of the 
measures. They were drawn manually in R. Bland and 
Altman recommended setting limits of agreement at 1.96 
standard deviations on either side of the mean difference, 
between which 95% of the difference may be expected to 
lie [21].

Results
Demographic data
Information regarding patient characteristics can be seen 
in Table  1 (asthma) and Table  2 (epilepsy). The specific 
subset of the OPCRD dataset for this analysis contained 
155,163 individuals from 544 GP practices. The SANAD 
arm B dataset contained 702 participants. Only smoking 
status within OPCRD included missing data.

Based on Table 1, women and smokers have more exac-
erbations. Additionally, previous exacerbations indicate 
more future exacerbations and from 2008, less than a 
quarter of asthma patients had an exacerbation recorded 
in 3  years of observation. Indeed, there were relatively 
few patients included for the first 3  years. Accord-
ing to Table 2, the characteristics of patients are similar 
across the three randomised treatments except for the 
annual seizure rate prior to randomisation. There is no 
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clinical reason for this variation as patients were ran-
domly assigned to the treatments.

Over the 3-year observation period, 49% (76,801) of 
individuals did not experience an asthma exacerbation. 
Of those that did, 34,277 had one (44%). For people with 
asthma who were having exacerbations, the median was 
3 exacerbations with an IQR of 2 to 4 (Fig. 1, left).

Based on the epilepsy data, over the duration of the 
study, 30% (212) of individuals did not experience sei-
zures. A histogram of the number of non-zero seizures 
reported during follow-up, per patient with epilepsy, can 

be seen in Fig. 1 (right)—it is capped at 50 although peo-
ple did report between 0 and 2100 seizures during the 
observation period. The median number of non-zero sei-
zures per person was 20 (interquartile range 4–150).

Covariate effects
Data for 147,908 individuals with asthma but without 
missing data for smoking status were used to fit all four 
multivariable models—negative binomial (exacerbation 
count), zero-inflated negative binomial (exacerbation 
count), Andersen-Gill (time between exacerbations) and 

Table 1 Characteristics of 155,163 people with asthma (OPCRD)

Variable Column % Number of exacerbations during observation period, 
row %

0 (49%) 1 (23%)  ≥ 2 (28%)

Gender Female 57 45 23 32

Male 43 56 21 23

Previous exacerbations No 33 59 20 21

Yes 67 45 23 32

Smoking status Non-smoker 57 52 22 26

Current smoker 15 46 22 32

Ex-smoker 23 47 22 31

Missing 5 47 22 31

Year of entry into study 2005 3 44 22 34

2006 7 41 23 36

2007 3 42 22 36

2008 10 51 22 27

2009 12 53 22 25

2010 10 50 22 28

2011 22 50 22 28

2012 24 50 22 28

2013 10 51 22 27

Age at entry into study, median (interquartile range) 44 (29, 58) 46 (33, 60) 50 (37, 63)

Table 2 Demographic data for arm B of SANAD

IQR inter-quartile range

Variable Valproate (n = 234) Lamotrigine (n = 235) Topiramate (n = 233) Total (n = 702)

Gender Female 93 (40) 95 (40) 93 (40) 281 (40)

Male 141 (60) 140 (60) 141 (60) 422 (60)

Primary relative with epi-
lepsy

Absent 197 (84) 183 (78) 195 (84) 575 (82)

Present 37 (16) 52 (22) 38 (16) 127 (18)

Age at randomisation (years), median (IQR) [range] 18.9 (12.5, 27.6)
[5.0, 76.9]

18.6 (12.8, 29.1)
[5.3, 77.1]

18.9 (12.5, 27.6)
[5.0, 75.2]

18.9 (12.5, 28.3)
[5.0, 77.1]

No seizures during follow-up 82 (35) 58 (25) 72 (31) 212 (30)

Tonic–clonic seizures Annual seizure rate prior 
to randomisation % < 1 
seizure/year

60.8 51.5 31.8 48.0

Median (IQR) for those 
with rate ≥ 1 seizure/yr

53 16.7 (4.4, 50.5) 35 21.5 (4.0, 63.7) 44 16.3 (3.5, 68.4) 44 17.95 (3.9, 63.2)
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Fig. 1 (Left) Histogram for number of exacerbations in people who had at least one asthma exacerbation. (Right) Histogram showing the number 
of non-zero seizures reported per person during follow-up (capped at 50)

Table 3 Effects of covariates on exacerbation occurrence or rate (OPCRD)

NB negative binomial, ZINB zero-inflated negative binomial, AG Andersen-Gill, PWP-TT Prentice, Williams and Peterson total time, RR relative risk, OR odds ratio, HR 
hazard ratio
* Log transformation identified through multivariable fractional polynomial procedure where applicable

Variable Level NB: OR (95% CI) ZINB logit: OR (95% 
CI)

ZINB count: RR 
(95% CI)

AG: HR (95% CI) PWP-TT: HR (95% CI)

Intercept  − 8.50 (− 8.59, − 8.41)  − 5.21 (− 5.57, − 4.86)  − 7.55 (− 7.68, − 7.42) N/A N/A

Age (log*) 1.41 (1.38, 1.44) 0.75 (0.69, 0.82) 1.28 (1.24, 1.32) 1.42 (1.40, 1.44) 1.30 (1.29, 1.32)

Gender Female 1.00 1.00 1.00 1.00 1.00

Male 0.74 (0.72, 0.75) 1.52 (1.40, 1.65) 0.82 (0.80, 0.84) 0.77 (0.76, 0.78) 0.83 (0.82, 0.84)

Previous exacerba-
tions

No 1.00 1.00 1.00 1.00 1.00

Yes 2.01 (1.97, 2.06) 0.32 (0.29, 0.35) 1.40 (1.35, 1.45) 1.46 (1.44, 1.49) 1.30 (1.28, 1.31)

Smoking status Non-smoker 1.00 1.00 1.00 1.00 1.00

Current smoker 1.32 (1.29, 1.36) 0.72 (0.65, 0.80) 1.23 (1.19, 1.27) 1.26 (1.23, 1.28) 1.18 (1.16, 1.19)

Ex-smoker 1.13 (1.10, 1.16) 0.90 (0.82, 0.99) 1.10 (1.07, 1.14) 1.09 (1.07, 1.11) 1.06 (1.05, 1.07)

Year of entry 
into study

2013 1.00 1.00 1.00 1.00 1.00

2005 1.16 (1.06, 1.28) 1.14 (0.81, 1.62) 1.21 (1.06, 1.37) 1.35 (1.27, 1.44) 1.25 (1.20, 1.31)

2006 1.22 (1.16, 1.28) 0.71 (0.57, 0.89) 1.12 (1.05, 1.19) 1.30 (1.25, 1.34) 1.21 (1.18, 1.24)

2007 1.27 (1.19, 1.35) 0.80 (0.62, 1.04) 1.21 (1.11, 1.30) 1.27 (1.22, 1.33) 1.18 (1.14, 1.21)

2008 1.09 (1.05, 1.14) 0.78 (0.65, 0.93) 1.03 (0.97, 1.09) 1.05 (1.01, 1.08) 1.02 (1.00, 1.05)

2009 1.05 (1.01, 1.10) 0.78 (0.66, 0.93) 0.99 (0.94, 1.05) 0.99 (0.96, 1.02) 0.99 (0.97, 1.01)

2010 1.09 (1.05, 1.14) 0.83 (0.70, 0.98) 1.04 (0.99, 1.10) 1.04 (1.01, 1.07) 1.02 (1.00, 1.04)

2011 1.05 (1.05, 1.09) 0.85 (0.73, 1.00) 1.01 (0.96, 1.06) 1.04 (1.01, 1.07) 1.02 (1.00, 1.04)

2012 1.06 (1.03, 1.10) 1.01 (0.87, 1.16) 1.07 (1.02, 1.12) 1.01 (0.98, 1.04) 0.99 (0.97, 1.01)
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PWP (time between exacerbations). The results can be 
seen in Table 3.

Each model requires a different interpretation. The 
results from the negative binomial model are the adjusted 
odds ratio for exacerbation count—an adjusted odds ratio 
of 1.32 for a current smoker for example suggests that 
the chance of an exacerbation is 32% more likely in peo-
ple who smoke than in non-smokers when accounting 
for the contributions of the other predictors. Adjusted 
odds ratios for exacerbation count are equivalent to the 
adjusted odds ratios from the count component of the 
zero-inflated negative binomial model.

The zero-inflated negative binomial model leads to 
two different outputs—a logit component and a count 
component. The results for the count component are 
the adjusted relative risk of having an exacerbation—an 
adjusted relative risk of 1.40 for previous exacerbation for 
example suggests that the chance of an exacerbation is 
40% higher in people with a previous exacerbation than 
those without when accounting for the contributions of 
the other predictors. The logit component is more chal-
lenging to interpret. The result is an adjusted odds ratio 
but rather than being the odds of having an exacerbation 
they are the adjusted odds of being an ‘excessive zero’. An 
excessive zero is defined as more zeros than expected by 

the distribution we are using for the modelling [22] For 
example, for gender, the odds ratio for the logit compo-
nent of the zero-inflated negative binomial model is 1.52. 
Therefore, the adjusted odds of there being an excessive 
zero increased by 52% for men compared to women so, 
men have a lower chance of exacerbations than women 
do (when accounting for the contributions of the other 
predictors).

The results for the Andersen-Gill and PWP models 
are adjusted hazard ratios for the rate of future exacer-
bations—an adjusted hazard ratio of 1.46 for previous 
exacerbation from the Andersen-Gill model for example 
suggests that the chance of an exacerbation is 46% more 
likely in people with a previous exacerbation than in 
those without when accounting for the contributions of 
the other predictors.

Table 4 shows the contribution of each predictor within 
all four models fitted to the example epilepsy data. The 
results are fairly consistent across the four models except 
for the effect of gender within the logistic component of 
the zero-inflated model. According to these results, men 
are less likely to have exacerbations than women. Results 
from the other models suggest that women have a higher 
rate of seizures. Therefore, the data show that men are 
less likely to report a single exacerbation than women.

Table 4 Effects of covariates on seizure occurrence or rate (SANAD)

NB negative binomial, ZINB zero-inflated negative binomial, AG Andersen-Gill, PWP-TT Prentice, Williams and Peterson total time, RR relative risk, OR odds ratio, HR 
hazard ratio

Variable NB: OR (95% CI) ZINB logit: OR (95% 
CI)

ZINB count: RR (95% 
CI)

AG: HR (95% CI) PWP-TT: HR (95% CI)

Intercept 6.54 (5.66, 7.47) 2.23 (1.24, 3.25) 6.31 (5.583, 7.08) N/A N/A

Gender Female 1.00 1.00 1.00 1.00 1.00

Male 1.15 (0.79, 1.67) 0.60 (0.41, 0.88) 1.37 (1.00, 1.88) 1.31 (0.90, 1.91) 1.09 (1.00, 1.20)

Primary relative 
with epilepsy

Absent 1.00 1.00 1.00 1.00 1.00

Present 2.10 (1.36, 3.37) 2.00 (1.21, 3.42) 1.83 (1.28, 2.68) 1.74 (1.07, 2.81) 1.09 (0.96, 1.24)

Treatment Valproate 1.00 1.00 1.00 1.00 1.00

Lamotrigine 1.74 (1.13, 2.69) 1.83 (1.18, 2.85) 1.52 (1.05, 2.21) 2.01 (1.27, 3.18) 1.14 (1.02, 1.27)

Topiramate 1.55 (1.01, 2.39) 1.33 (0.87, 2.03) 1.55 (1.06, 2.26) 1.92 (1.18, 3.12) 1.17 (1.03, 1.31)

Age at randomisation (years) 0.28 (0.21, 0.37) 0.44 (0.32, 0.60) 0.34 (0.27, 0.43) 0.36 (0.24, 0.53) 0.90 (0.83, 0.98)

Annual tonic–clonic seizure rate prior 
to randomisation

0.86 (0.81, 0.91) 0.96 (0.89, 1.03) 0.86 (0.82, 0.90) 0.88 (0.81, 0.95) 1.02 (1.00, 1.03)

Table 5 Model fit statistics based on the predictions from the five models using both example datasets

Exacerbations (OPCRD) Seizures (SANAD)

Model RMPSE MAPE Prediction bias RMPSE MAPE Prediction bias

Negative binomial 1.25 1.35 0.11 20.70 1.23 18.43

ZINB 1.23 1.33 0.11 21.48 1.45 30.51

Andersen-Gill 0.99 0.86 0.87 26.25 1.61 − 48.01

PWP 0.95 0.86 0.87 1.79 0.51 − 3.15
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Numerical measures of model performance
Model fit statistics for the asthma and epilepsy mod-
els are presented in Table  5. Results show that for the 
low-event rate asthma data, the negative binomial 
and zero-inflated negative binomial models for exac-
erbation counts have high RMPSE and MAPE values 
although their prediction errors are small. High values 
for RMSPE and MAPE suggest poor model fit. The AG 
and PWP models have the smallest MAPE and RMPSE, 
showing good model fit but have large prediction errors 
demonstrating large uncertainty over the model fit. The 
PWP model has a slightly lower RMPSE than the AG 
model but equivalent MAPE values showing fairly simi-
lar model performance across the models.

For the high-event rate epilepsy data, according to 
RMPSE, MAPE and prediction bias, the PWP model is 
the best fit for the data as all three metrics had small val-
ues. The differences between the observed and predicted 
seizure counts are much smaller than for the other three 
models. The inclusion of the zero-inflation term gives a 
model which substantially overestimates counts, more 
than the standard negative binomial distribution.

Graphical measures
Calibration plots
Calibration plots of observed and predicted exacerbation 
counts for the four asthma models show that the PWP 
model fits quite well, and the other three fail (Fig. 2). The 
PWP plot has a smooth-fitted line fairly close to the 45° 

Fig. 2 Calibration plots comparing observed and predicted asthma exacerbation counts
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line of agreement. The negative binomial, zero-inflated 
negative binomial and Andersen-Gill models have fitted 
lines far from agreement.

According to the calibration plots for the epilepsy 
example (Fig. 3), the PWP model shows excellent agree-
ment between the observed and predicted seizure counts. 
The negative binomial, zero-inflated negative binomial 
and Andersen-Gill models are clearly inadequate for 
prediction. The calibration plots suggest that these mod-
els predict up to 250 seizures with tighter confidence 
bands than predictions beyond 250 seizures. This may be 
because of the diversity of the observed seizure counts. 

Conversely, the PWP-TT model demonstrates tight con-
fidence bands irrespective of the number of observed or 
predicted seizures, which suggests that it is using the data 
more efficiently than the other models.

Bland–Altman plots
Asthma
Given the low event rate for the asthma plot, it is not 
appropriate to draw Bland–Altman plots as this method 
provides only limited information when the range of 
observed values is small relative to the number of obser-
vations [23]. Instead, deviance residuals were considered. 

Fig. 3 Calibration plots comparing observed and predicted seizure counts
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Deviance residuals are numerical measurements of 
agreement between a model’s fit and the fit of an ideal 
model. If a deviance residual is 0, it indicates that the 
value for that data point is identical to the value for that 
data point in the ideal model and thus the model fits the 
data well [24]. The associated formula is presented in 
Appendix 2.

Tables of deviance residuals were examined to deter-
mine if any non-fitting was systematic across patient 
characteristics. Prediction bias according to combina-
tions of risk factors can be seen in Table  6. The values 
summarise how far, on average, the predicted counts are 
from the actual counts. The zero-inflated negative bino-
mial is the least biased, with a slightly smaller prediction 
bias than the negative binomial. The predictions for peo-
ple with previous exacerbations are less accurate than for 
those without.

Epilepsy
The Bland–Altman plots for the epilepsy dataset can be 
seen in Fig. 4. The solid black line is the mean of the dif-
ferences and the dotted lines represent a 95% limit of 
agreement around the mean difference. The discrepancy 
between the observed and expected counts is smaller for 
the PWP-TT model than the other three suggesting that 
this model fits the data better than the other three. Addi-
tionally, the limits of agreement are much narrower for 
the PWP-TT model than the other three suggesting that 

the predictions are in close agreement from this model. 
The small group of patients at the left (mean about − 2) 
have higher observed counts than predicted by the PWP-
TT models.

Discussion
This analysis considered numerical and graphical ways 
to evaluate the model performance of recurrent event 
prediction models. Examples of asthma and epilepsy 
datasets were modelled in four ways—negative bino-
mial, zero-inflated negative binomial, Andersen-Gill and 
PWP. Numerical and graphical measures determined 
that the PWP model was the most appropriate model 
for the asthma and epilepsy examples as the predicted 
event counts from this model most closely matched the 
observed counts. However, the negative binomial did 
show much better performance for the asthma dataset 
than the epilepsy dataset and thus may be more suited to 
low event rate data.

Few published analyses of clinical data have utilised 
statistical models for recurrent event data. Those that 
have included an analysis of diarrhoeal episodes in 
children [25], a population-based study of repetitive 
traumatic brain injury among persons with traumatic 
brain injury [26], recurrent malaria episodes [27], and 
childhood infectious diseases [28]. Whilst these publi-
cations demonstrate a comparison of approaches, there 

Table 6 Z-score statistics based on the predictions from the four models

Prediction bias (n) Non-smoker Current smoker Ex-smoker

Negative binomial

 Female, previous exacerbations 0.17 0.21 0.21

 Male, previous exacerbations 0.12 0.24 0.14

 Female, no previous exacerbations − 0.02 − 0.03 0.02

 Male, no previous exacerbations 0.01 0.05 0.00

Zero-inflated negative binomial

 Female, previous exacerbations 0.16 0.18 0.19

 Male, previous exacerbations 0.12 0.24 0.14

 Female, no previous exacerbations − 0.01 − 0.01 0.03

 Male, no previous exacerbations − 0.01 0.04 −0.01

Andersen-Gill

 Female, previous exacerbations 1.07 1.34 1.25

 Male, previous exacerbations 0.72 0.96 0.91

 Female, no previous exacerbations 0.61 0.77 0.75

 Male, no previous exacerbations 0.43 0.57 0.54

PWP

 Female, previous exacerbations 1.06 1.39 1.25

 Male, previous exacerbations 0.73 0.92 0.91

 Female, no previous exacerbations 0.61 0.76 0.73

 Male, no previous exacerbations 0.44 0.56 0.55
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is relatively little information or practical guidance on 
how to evaluate the performance of the fitted models.

This paper is the first to successfully apply existing 
methods to evaluate the performance of prediction 
models for recurrent event data. By choosing two dif-
ferent clinical areas typified by different underlying 
event rates, and four different modelling approaches, 
we have been able to highlight the benefits and short-
comings of a variety of approaches. Whilst some model 
choices will be informed by the available data (event 
counts or dates of events for example) and assumptions 
regarding the independence of the events [11], this is 
the first analysis to consider approaches to evaluate the 
performance of statistical models for recurrent events.

There are limitations to this analysis. First, the out-
come measures agreed upon by the International League 
Against Epilepsy [22] combined with how dates of sei-
zures are collected in randomised controlled trials and 
clinical practice for people with epilepsy necessitates the 
imputation of event times. Some event-specific times 
are unavailable within the epilepsy dataset. Imputation, 
assuming a constant event rate, has been used. Where 
there were no events, no event time has been imputed 
and if there were only one or two seizures between visits 
the dates of these seizures will be recorded exactly.

SANAD was a randomised controlled trial that may 
be considered to only include a highly selected patient 
cohort with a tightly controlled ecology of care. This may 

Fig. 4 Bland–Altman style plots by 2 years after randomisation comparing the mean of the predicted and observed seizure counts 
by the difference between the observed and predicted counts
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potentially have led to an overestimation of predicted 
event counts across the models. The opposite is true for 
OPCRD. It is real-world data so there will be some indi-
viduals included who do not actually have asthma and 
some events that are not captured. This will increase the 
noise within the dataset but is unlikely to bias the results 
in any given direction.

The varied number of events per individual, particu-
larly for epilepsy means that some strata of the PWP 
model have only a few events which could lead to an 
over-optimistic impression of the PWP. Despite this, the 
results suggest that the PWP model fits the epilepsy data 
better than the other models. For asthma, with none or 
few events over 3 years, the zero-inflated negative bino-
mial model may be most appropriate as there are likely 
too few events to reliably estimate the rates used in the 
AG and PWP models [11].

Work is now needed to develop a methodology to 
evaluate the discrimination of recurrent event predic-
tion models, as required by the Transparent reporting of 
a multivariable prediction model for individual progno-
sis or diagnosis (TRIPOD) reporting guidelines [29, 30]. 
Additionally, only two clinical examples have been con-
sidered here. Whilst they have different underlying event 
rates it is important to evaluate which recurrent event 
models should be used given the underlying clinical event 
rate via a simulation study for example. Finally, it will be 
important to develop software packages to support the 
development and evaluation of model performance of 
recurrent event prediction models.

Conclusions
Usually, data involving recurrent conditions are modelled 
by selecting an endpoint at a fixed time point of interest 
such as time to first asthma exacerbation after diagnosis 
or time 12-month remission from seizures after com-
mencing treatment for people with epilepsy. Although 
this is relatively simple to analyse, valuable informa-
tion about the participant’s event journey is lost. There 
are several alternatives including the negative binomial, 
zero-inflated negative binomial, Andersen-Gill and PWP 
models. However, there is limited guidance as to how 
to evaluate the performance of such models. This study 
highlights the potential of straightforward evaluation 
techniques to highlight marked differences in the per-
formance of available models when analysing clinical 
datasets.

This work has the potential to improve the way that 
chronic conditions typified by recurrent events are mod-
elled in the future. In turn, this may lead to more appro-
priate clinical prediction models and therefore improved 
treatment choice and patient counselling.
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