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Abstract

Over the past few years, evidence synthesis has become essential to investigate and improve the generalizability of
medical research findings. This strategy often involves a meta-analysis to formally summarize quantities of interest,
such as relative treatment effect estimates. The use of meta-analysis methods is, however, less straightforward in
prognosis research because substantial variation exists in research objectives, analysis methods and the level of
reported evidence.
We present a gentle overview of statistical methods that can be used to summarize data of prognostic factor and
prognostic model studies. We discuss how aggregate data, individual participant data, or a combination thereof can
be combined through meta-analysis methods. Recent examples are provided throughout to illustrate the various
methods.
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Content
Thorough and systematic appraisal of the existing evi-
dence has become mainstream in medical research and
practice [1, 2]. Over the past few decades, meta-analysis
has been put forward as the de facto statistical method
for summarizing the results from a systematic review and
appraisal of existing data on a certain topic. In meta-
analysis, estimates of interest (e.g., for a specific treat-
ment effect [3] or diagnostic test-outcome association)
are obtained from individual studies and then combined
into a weighted average. Such quantitative data synthesis
potentially increases statistical power to detect genuine
associations or effects, to investigate sources of variation
within and across studies, and to answer questions that
were not posed by individual studies [4, 5].
Meta-analysis is commonly applied in the domain of

randomized therapeutic intervention studies [3] and,
more recently, in that of diagnostic test accuracy studies.
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In the current era of personalized or precision medicine,
the use of prognostic information is considered increas-
ingly important to predict outcomes of individuals (off
or on treatment) in order to make tailored treatment
decisions [6–11]. It therefore seems timely to apply meta-
analytic approaches that allow the quantitative synthesis
of prognostic evidence [12].
Key barriers of quantitative synthesis of data from prog-

nosis studies are, among others, the lack of high-quality
data often due to poor reporting, lack of uniformity in
statistical analysis across studies, lack of agreement on
relevant statistical measures, and lack of meta-analytical
guidance for synthesis of prognosis study data. Recently,
much guidance has been written on how to define a
review question [13], define the PICOTS (Patients, Index
prognostic factor or model, Comparator factor or model,
Outcomes, Timing of prognostication, Setting of prog-
nostication), define the search strategy, design the data
extraction list [14], and do risk of bias assessments
[14, 15]. However, there is relatively little guidance on how
to do the actual meta-analysis of results from prognosis
studies.
In this paper, we discuss how the data or prognos-

tic results from individual studies, routine care sources
(e.g., hospital records or registries), and biobanks can
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be combined quantitatively. Hereto, we describe statis-
tical methods for the meta-analysis of aggregate data
(AD), individual participant data (IPD), or a combina-
tion thereof. The aim of this gentle overview is to inform
researchers of available methods for synthesis of data of
prognostic factor and prognostic model studies and to
encourage their use when individual studies fail to pro-
vide generalizable evidence, as we wish to highlight recent
advances in these fields.

Quantitative synthesis in prognostic factor
research
Estimates of overall prognosis (e.g., population outcome
risk) are rarely sufficient to inform treatment recom-
mendations and individual patient management. For this
reason, it is often helpful to distinguish groups of peo-
ple with a different average prognosis [6, 7]. A common
approach is to identify specific factors that, among people
with a given startpoint (such as diagnosis of disease), are
associated with a subsequent endpoint [8]. This generally
requires estimation of a factor-outcome association which
can, for instance, be quantified using a hazard ratio or an
odds ratio [8].
Several meta-analysis methods can be used to gen-

erate summary estimates of the association between a
prognostic factor and a certain outcome. Although it
is fairly straightforward to summarize crude (i.e., unad-
justed) estimates of a particular factor-outcome associ-
ation, this practice is generally discouraged because in
practice hardly any prognostication is done based on a
single factor only [16, 17]. For this reason, we here focus
onmeta-analysis methods to summarize the adjusted esti-
mates of a certain prognostic factor and outcome. An
overview of the presented methods is provided in Table 1.

Meta-analysis of prognostic factor estimates using
aggregate data
A relatively simple situation arises when the prognostic
factor of interest is unadjusted in all studies, or has been
adjusted for the same other prognostic factors (covariates)
in all studies. Traditional meta-analysis methods—as used
inmeta-analysis of intervention studies—can then be used
to summarize the corresponding aggregate data (AD) [18].
The most well-known approach, also from other types of
meta analysis, is the so-called fixed effect meta-analysis
approach, which can be formulated as follows [19, 20]:

θ̂i ∼ N
(
μ, ŝ2i

)
(1)

where θ̂i is the estimated factor-outcome association (e.g.,
log hazard ratio) from the ith study, with an estimated
standard error ŝi. This approach yields a summary esti-
mate of the prognostic effect (μ), which simply represents
a weighted average of the θ̂is.
A common interpretation of fixed effect meta-analysis

is that the true factor-outcome association is identical
for all studies (i.e., θi = μ). In practice, however, true
values for factor-outcome associations are likely to vary
across studies due to differences in, e.g., study design,
follow-up, variable definitions, adjustment factors, set-
tings, and healthcare standards. It may therefore be more
reasonable to assume that the factor-outcome associa-
tions θi are unrelated and to adopt a fixed effects meta-
analysis [21]. In this approach, the weight for each study
is proportional to both the number of study participants
and to how much information is contributed per sub-
ject. The meta-analysis then produces an average effect
applicable to an amalgamation of the contributing study
populations.

Table 1 Available methods for quantitative synthesis in prognostic factor research

Available data Estimate of interest Possible methods for evidence synthesis

AD Baseline characteristics Linear FOA Meta-regression [34]

Similarly adjusted FOAs Linear FOA Univariate meta-analysis [19], multivariate meta-analysis [20, 33, 57]

Non-linear FOA Univariate meta-analysis [36, 37], multivariate meta-analysis [35]

Not similarly adjusted FOAs Linear FOA Multivariate meta-analysis [33, 56, 57]

IPD Linear FOA One-stage meta-analysis [34, 38], two-stage meta-analysis [38], multivariate

meta-analysis [38, 56], graphical meta-analysis [98]

Non-linear FOA One-stage meta-analysis [34, 41], two-stage meta-analysis [37, 41], multivariate

meta-analysis [43]

IPD + AD Baseline characteristiscs Linear FOA Hierarchical-related regression [34]

Non-linear FOA Hierarchical-related regression [34]

Similarly adjusted FOAs Linear FOA Two-stage meta-analysis, hierarchical-related regression [49]

Non-linear FOA Two-stage meta-analysis [37], hierarchical-related regression [34]

Not similarly adjusted FOAs Linear FOA Multivariate meta-analysis [51, 56], adaptation method [53, 54]

FOA factor-outcome association
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Finally, a third option is to adopt a so-called random
effects meta-analysis approach, which assumes that the
factor-outcome associations θi are different but related
across studies. A major advantage of this approach is that
the presence of between-study heterogeneity can directly
be quantified [19, 20]:

θ̂i ∼ N
(
μ, τ 2 + ŝ2i

)
(2)

The random effects model includes an additional
parameter τ representing the (unknown) between-study
standard deviation. The overall summary result (μ) now
represents the average (mean) prognostic effect of the
factor across the studies.
Several methods exist for estimating the weighted

average μ and the between-study standard deviation τ

[22, 23]. One approach is to estimate μ and τ simultane-
ously, e.g., by adopting (restricted) maximum likelihood
estimation. Alternatively, it is possible to first estimate τ

and then use the corresponding value to obtain an esti-
mate for μ. When this strategy does not take the uncer-
tainty of τ into account, confidence intervals for μ may
become too narrow [24]. For this reason, it is generally
recommended to adjust these intervals using the meth-
ods proposed by Hartung and Knapp [25] and Sidik and
Jonkman [26].
As an example, Zhang et al. previously investigated

the prognostic effect of progesterone receptor status

in cancer-specific survival in endometrial cancer [27].
Aggregate data from 6 studies were pooled using a
random effects meta-analysis (Der Simonian and Laird
method), yielding a summary hazard ratio of 0.62 and a
corresponding 95% confidence interval (95% CI) ranging
from 0.42 to 0.93. When adopting restricted maximum
likelihood estimation, the summary estimate changed to
0.61 with a 95% CI from 0.38 to 1.00 (Fig. 1). The wider CI
is due to a larger estimate of τ when using restricted max-
imum likelihood estimation rather than DerSimonian and
Laird.

Multivariatemeta-analysis
Whereas traditional meta-analysis methods are applied
to summarize multiple estimates of a single parameter, it
is also possible to jointly summarize multiple estimates
of two (or more) parameters using so-called bivariate (or
multivariate) meta-analysis methods [20, 28, 29]. These
methods are well known in themeta-analysis of diagnostic
test accuracy, where one jointly estimates the sensitivity
and specificity of the test under review [30]. Multivariate
meta-analysis methods aim to account for the correlation
between the different parameter estimates and can there-
fore be used to deal with situations where two or more
correlated parameters/statistics are to be synthesized per
study. The (bivariate) random effects model for jointly
summarizing the AD for two parameters of interest is
given as follows:

Fig. 1 Forest plot for prognostic effect of progesterone on cancer specific survival in endometrial cancer, with summary results for univariate and
multivariate meta-analysis. The multivariate meta-analysis of cancer specific survival and progression-free survival used the approach of Riley et al. to
handle missing within study correlations, through restricted maximum likelihood estimation [33]. Heterogeneity was similar in both univariate and
multivariate meta-analyses (I2 = 70%)
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(
θ̂1i
θ̂2i

)
∼N

((
μ1
μ2

)
,
(

τ 21 ρτ1τ2
ρτ1τ2 τ 22

)
+

(
ŝ2i1 r̂iŝi1ŝi2

r̂iŝi1ŝi2 ŝ2i2

))
(3)

where r̂i and ρ represent the (estimated) within-study and,
respectively, the (unknown) between-study correlation
coefficients. For example, θ̂1 and θ̂2 may be the prognostic
effect on outcome 1 and outcome 2, respectively.
A common application of multivariate meta-analysis

arises when researchers are interested in a prognos-
tic factor’s association with multiple outcomes [28]. For
instance, in the endometrial cancer example, the unad-
justed hazard ratio (HR) of progesterone was estimated for
cancer-specific survival (6 studies) and for progression-
free survival (11 studies). The corresponding hazard ratios
of the 17 studies were then jointly pooled using a bivari-
ate random effects meta-analysis [28]. As illustrated in
Fig. 1, this strategy yielded a different and more pre-
cise summary estimate of cancer-specific survival (unad-
justed HR = 0.48, 95% CI 0.29 to 0.79) as compared to
the univariate meta-analysis approach above (unadjusted
HR = 0.61, 95% CI 0.38 to 1.00).
Multivariate meta-analysis can also be used to jointly

summarize prognostic factor-outcome associations that
have been adjusted for different sets of prognostic fac-
tors (covariates). Researchers then need to distinguish
between estimates that are adjusted for all relevant covari-
ates, and estimates that are only adjusted for some (but
not all) of the relevant covariates.
Unfortunately, the within-study correlations r̂i are rarely

reported, thereby complicating the multivariate meta-
analysis approach. Riley previously demonstrated that
simply ignoring these correlations can lead to meta-
analysis results with inferior statistical properties [31].
Researchers may therefore assume a common within-
study correlation (e.g., r̂i = 0 for all studies), recover
its magnitude from reported summary statistics [32], or
replace all within- and between-study correlations by an

overall correlation parameter that is estimated from the
AD at hand [33].

Othermeta-analysis approaches
Several extensions for ADmeta-analysis of prognostic fac-
tor studies have been proposed and can be used to explore
sources of between-study heterogeneity [20, 34], to com-
bine studies with different methods of measurement [35],
or to combine studies that categorized continuous factors
[35–37].

Meta-analysis using individual participant data (IPD)
When IPD are available from multiple prognostic factor
studies, various random effects meta-analysis models are
possible that employ a one-stage or two-stage approach
[3, 38, 39].

Two-stagemeta-analysis
In the two-stage approach, each study is first summarized
by its factor-outcome association estimate and standard
error. These AD are then appropriately combined across
studies into a summary effect using traditional meta-
analysis methods. For instance, Trivella et al. performed
a two-stage IPD-MA to investigate the role of angiogen-
esis as a prognostic factor in patients with non-small-cell
lung carcinoma [40]. They estimated the log hazard ratio
of microvessel-density counts for each participating study
center, adjusted for age and cancer stage. These estimates
were then pooled using random effects inverse-variance
meta-analysis (Fig. 2).
The two-stage IPD-MA approach can also be used to

summarize the association of non-linear prognostic fac-
tors [41, 42]. In the first stage, the factor-outcome associ-
ation of interest is modeled separately for each study with
a certain functional form (e.g., cubic spline) and parame-
terization (e.g., location of knots). An overall function can
then be obtained in the second stage by meta-analyzing

Fig. 2Meta-analysis of multivariable predictor effects. Association between risk of death and increase of one microvessel count, as measured by the
Chalkley method. Estimates represent multivariable hazard ratios, adjusted for age and cancer stage [40]
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the study-specific function values for distinct factor values
[41, 42].
For instance, Sauerbrei et al. combined IPD from nine

population-based registries to study the prognostic effect
of age in T1-2 breast cancer patients [41]. They estimated
a Cox regression model separately in each registry, and
adjusted for 5 to 10 other prognostic factors such as the
type of surgery and radiotherapy. Studywise selected frac-
tional polynomials (FP) were used to model the adjusted
effect of age. The resulting FP functions were then aver-
aged pointwise, with weights for each registry depending
on the variance of the the log relative hazard at distinct
age values. Results indicated that the mortality risk is low
for women between about 40 and 65 years, and increases
outside this range.

Multivariate (two-stage) meta-analysis
Also for IPD meta-analysis, it is possible to simultane-
ously analyze multiple outcomes by adopting multivariate
meta-analysismethods. This typically involves a two-stage
approach where the IPD of each study is first reduced
to AD (including estimates of the within-study correla-
tion) and subsequently pooled across studies. Multivariate
meta-analysis methods have, for instance, been proposed
to summarize the association of (non-linear) continuous
markers [43]. In the first stage, a common function (e.g.,
spline with a common location and number of knots for
all studies) is estimated separately in each study. The
resulting AD (e.g., multivariable regression coefficients)
are then pooled across studies in the second stage. In con-
trast to univariate pooling of estimated effects on a grid of
exposure values [41], a major advantage of this approach is
that it better accounts for correlations, thereby decreasing
bias and improving precision.

One-stagemeta-analysis
An alternative approach for IPD meta-analysis (IPD-MA)
of prognostic factor studies is a one-stage approach which
synthesizes the IPD from all studies in a single step,
while accounting for clustering of patients within studies
[44, 45]. The estimation of a pooled factor-outcome asso-
ciation then involves the fitting of a mixed effect model,
where each parameter (e.g., regression coefficient) can
be specified as common, random or independent (fixed)
across studies. One-stage methods appear particularly
advantageous when few studies or few patients per study
are available [38], or when studies involve time-to-event
outcomes [46, 47].
For instance, Den Ruijter et al. performed a one-stage

meta-analysis using IPD from 14 cohorts to estimate
the association between (log-transformed) carotid intima-
media thickness (CIMT) and the incidence of first-time
myocardial infarction or stroke [48]. They first assessed
between-study heterogeneity by estimating statistical

interaction between cohort and CIMT measurements.
Subsequently, a multivariable Cox proportional-hazards
model was fitted with random effects for the baseline haz-
ard and common effects for the regression coefficients.
When adopting a one-stage approach, it is generally rec-

ommended to account for potential ecological bias [34].
This bias may, for instance, arise when patient outcomes
are associated with the mean value of the prognostic fac-
tor, rather than the individual covariate values. Ecological
bias can be mitigated by separating the within-study and
across-study associations, as described elsewhere [49].

Meta-analysis using IPD and AD
Although IPD meta-analyses are generally considered as
the gold standard, IPD cannot always be obtained from all
relevant studies. To avoid (data availability) bias, it is often
helpful to supplement the available IPD with AD for those
studies where IPD are not available [50]. This strategy can
be implemented using the approaches described below,
assuming suitable AD can be obtained from the non-IPD
studies.

Two-stagemeta-analysis
A simple approach is to generate AD from each available
IPD set and to jointly summarize the newly derived (from
IPD studies) and previously published AD (from non-IPD
studies) using aforementioned meta-analysis methods for
AD [50]. When critical information from the non-IPD
studies is missing (e.g., within-study correlations), the
IPD studies can be used to derive the relevant statistics,
thereby reducing the risk of bias in summary estimates
[31, 35, 51, 52].
A specific situation arises when the non-IPD studies

provide factor-outcome associations that are not adjusted
for all relevant covariates. A two-stage bivariate meta-
analysis can then be used to combine these partially
adjusted estimates with the (fully and partially adjusted)
factor-outcome associations from the IPD studies.

The adaptationmethod
As mentioned earlier, it is common that AD studies do
not adjust for all relevant covariates and only provide
factor-outcome associations that are partially adjusted. An
alternative method to combine fully adjusted associations
with the partially adjusted ones is to use the difference in
value between the corresponding regression coefficient(s)
[53, 54]. This difference is first estimated in the IPD at
hand, and then applied to the summary estimate of the
partially adjusted factor-outcome association. The adap-
tation method has, for instance, been applied in a study
investigating risk factors for methicillin-resistant Staphy-
lococcus aureus acute bacterial skin and skin structure
infections [55]. The study authors conducted a literature
review to retrieve unadjusted odds ratios for 7 potential
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risk factors. These odds ratios were then summarized for
each risk factor using a random effects meta-analysis and
adapted into an adjusted odds ratio using the IPD at hand.
The adaptation method is strongly related, and in some

situations even equivalent, to the aforementioned two-
stage meta-analysis approach [56]. Although formal com-
parisons are lacking, it has been argued that the adapta-
tion method may be less statistically and computationally
efficient.

Hierarchical-related regression
This one-stage approach directly combines the available
IPD and AD by specifying a distinct likelihood for each
data source [34, 49]. This enables the IPD studies to con-
tribute in all parameter estimates, whereas the AD studies
are only used to estimate the study-level parameters and
across-study relationships. For example, Riley and Steyer-
berg adopted hierarchical-related regression to investigate
the relationship between age and the risk of 6-monthmor-
tality in patients with traumatic brain injury (TBI) [34].
They used a Bernoulli distribution to model the binary
outcomes from 4 IPD studies and a Binomial distribu-
tion for the observed event counts in 10 AD studies. To
account for potential ecological bias, the within-study and
across-study effects for participant age were separated
when jointly analyzing the 14 studies. It was found that an
individual’s probability of death by 6 months increases as
their individual age increases and also as the mean age in
their study (or population) increases. A possible explana-
tion for this is that studies with a highermean age involved
clinicians with less experience of treating TBI patients.

Summary points
Evidence synthesis in prognostic factor research may help
to identify factors that are associated with a certain clin-
ical outcome, to explore their functional form, and to
quantify their incremental value over established prog-
nostic factors [8]. When IPD are unavailable, traditional
meta-analysis methods can be used to summarize pub-
lished prognostic factor estimates in order to identify
genuine prognostic factors [18]. Although IPD are not
strictly required to assess the incremental value of a prog-
nostic factor or to explore its functional form, this may
often be unfeasible using published AD only [44]. For
this reason, when IPD are available for a few studies,
corresponding information can be used to restore unre-
ported AD (e.g., missing within-study correlations) or to
adapt unadjusted factor-outcome associations. Evidence
synthesis in prognostic factor research is, however, most
appealing when multiple sources of IPD are available,
as this allows to derive desired prognostic factor results
directly and to analyze continuous factors more appro-
priately [8]. Meta-analysis of IPD is preferably initiated
using a two-stage approach, as corresponding methods

are relatively straightforward to implement and guard
against ecological bias. One-stage meta-analysis methods
may, however, be more appealing when few studies or few
subjects per study are available, as they are more flexible,
resistant against small sample bias, and avoid the need for
estimating correlations between random effects [38].

Quantitative synthesis in prognostic model
research
Prognostic model research aims to examine multiple
prognostic factors in combination [6], in order to predict
the absolute risk of future outcomes in single individ-
uals. Corresponding studies may derive new prognostic
models (so-called development studies), evaluate the per-
formance of existing models in new individuals (so-called
validation studies) and if necessary tailor their predic-
tions, or examine the model’s impact on health-related
outcomes.
Currently, most prognostic models are developed based

on relatively small studies. Hence, many of these mod-
els do not perform adequately when applied to other
individuals [9, 58–60]. To investigate and improve the per-
formance of prognostic models across different settings
and populations, researchers may consider meta-analysis
methodsduring their development and validation [6, 61–65].
Several strategies for this purpose are described below and
summarized in Figs. 3 and 4. As before, we distinguish
between situations where the available data sources com-
prise of aggregate data, individual participant data, or a
combination of both.

Meta-analysis using AD
Validation of an existing prognostic model
A common source of AD are so-called external val-
idation studies assessing the (discrimination and cal-
ibration) performance of a certain prognostic model
when tested in other individuals than from which the
model was developed. By summarizing these performance
estimates, it becomes possible to identify whether the
model’s predictions are sufficiently accurate across differ-
ent settings and populations. This typically requires the
retrieval of multiple performance statistics (e.g., concor-
dance statistic, calibration-in-the-large, calibration slope)
and corresponding standard errors [66, 67]. The result-
ing estimates can then be pooled using traditional meta-
analysis methods, provided that an appropriate scale
[68] or link function [67, 69] is used. Although differ-
ent study weights can be used [21, 70], it is generally
recommended to allow for between-study heterogene-
ity as validation studies are likely to differ in their
design and execution [66–68]. As is the case in meta-
analysis of prognostic factor research, meta-regression
can be used to explore potential sources of between-study
heterogeneity.
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Fig. 3 Available methods for quantitative synthesis during prognostic model development. Abbreviations: MA, meta-analysis; IECV, internal-external
cross-validation; AD, aggregate data; IPD, individual participant data

For instance, vanDoorn et al. reviewed 19 published val-
idations of CHA2DS2-VASc, a prediction model for esti-
mating stroke risk in patients with atrial fibrillation [71].
A random effects meta-analysis was applied to summarize
estimates of model discrimination (logit c-statistic) and
annual risk per score (square root risks). The summary
c-statistic was 0.64 (95% CI 0.56–0.71), which increased
to 0.71 (95% CI 0.62–0.79) for studies recruiting patients
from a hospital care setting. Further, stroke risks were
found to vary substantially within the different scores and
were notably elevated in hospital patients as compared to
patients from the general population.

Development of a new prognostic model
It is also possible to summarize AD from multiple but
similar prognostic model development studies and to
combine their regression coefficients into a new pre-
diction model (for example, via a multivariate meta-
analysis) [32, 57]. This strategy is, however, often com-
plicated by the poor reporting of key model parameters

(and their standard errors and within-study correlations),
by inconsistent covariate adjustment across studies, and
by the presence of between-study heterogeneity. For this
reason, meta-analysis of previously developed prognostic
models only seems reasonable when the corresponding
studies are fairly homogeneous and when the required AD
are reported in sufficient detail (see also Fig. 3).

Meta-analysis using IPD
When IPD are available, it becomes possible to assess
and optimize the prognostic model’s performance across
different settings and populations using a one-stage or a
two-stage meta-analysis approach.

Validation of an existing prognostic model
In the two-stage approach, the model is first validated
separately in each IPD, yielding study-specific estimates
of model discrimination and calibration. These estimates
are then pooled across studies in the second stage, using
univariate [66, 70, 72] or multivariate [73] meta-analysis
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Fig. 4 Available methods for quantitative synthesis during prognostic model validation. Abbreviations: MA, meta-analysis; AD, aggregate data; IPD,
individual participant data

methods (Fig. 4). For instance, Snell et al. adopted mul-
tivariate IPD meta-analysis to summarize the calibration
slope and concordance statistic of a prognostic model
for breast cancer incidence. The summary estimates were
then used in combinationwith estimates of between-study
heterogeneity to calculate the probability that model per-
formance would be adequate (i.e., within certain ranges)
in new populations [73].
Model validation can also be performed through a one-

stage approach. For instance, the summary calibration
slope can be derived by fitting a mixed effect model with
study-specific intercept terms and a random effect for the
prognostic index.
Finally, several extensions of one-stage and two-stage

meta-analysis are possible. For instance, network meta-
analysis (NMA) can be used to assess the (relative)
performance of multiple prognostic models [74], which
is particularly helpful when direct comparisons are not
feasible for some studies. As an example, Haile et al.
compared the performance of 10 prognostic models for
calculatingmortality risk in patients with chronic obstruc-
tive pulmonary disease [74]. Although IPD were available
for 24 cohort studies (N = 15 762), information on
important variables was often missing such that some
models could not be validated in one or more studies
(Fig. 5). A two-stage NMA was therefore adopted to sum-
marize all available evidence on the models’ comparative

performance and to allow the inclusion of studies where
only few models could be validated.

Development of a new prognostic model
Meta-analysis of IPD is used increasingly often to develop
new prognostic models, with improved generalizability
across different settings and populations. Meta-analysis
approaches are similar to prognostic factor research, and
may involve a one-stage or a two-stage approach (see also
Fig. 3) [70]. In the two-stage approach, the parameters
of the prognostic model (e.g. intercept term and regres-
sion coefficients) are estimated separately in each study
and subsequently combined across studies using either
a fixed or random effects meta-analysis. Conversely, in
the one-stage approach, all IPD are simultaneously ana-
lyzed by assuming a common, fixed, or random effect for
each model parameter. Both approaches then yield a set
of study-specific and/or “pooled” regression coefficients
that can be used for making absolute risk predictions
in a variety of populations. One-stage approaches are
particularly helpful when studies are relatively small, or
contain few events, as they use a more exact statisti-
cal approach and do not require continuity corrections
when (partial) separation occurs [38]. Conversely, two-
stage approaches are generally preferred when modeling
interactions or non-linear terms, as they guard against
over-parameterization and ecological bias [43].
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Fig. 5 Validation of 10 prognostic models for 3-year mortality in patients with chronic obstructive pulmonary disease.Depiction of network structure
with lines weighted by the total number of participants available for each model comparison [74]. Abbreviations: GOLD, Global initiative for chronic
Obstructive Lung Disease; BODE, Body mass index, airflow Obstruction, Dyspnoea and severe Exacerbations; BODE upd., BODE updated; ADO, Age,
Dyspnoea, airflow Obstruction (we use the updated version of the ADO score in our analysis); e-BODE, severe acute exacerbation of COPD plus
BODE; BODEx, Body mass index, airflow Obstruction, Dyspnoea, severe acute Exacerbation of COPD; DOSE, Dyspnoea, Obstruction, Smoking and
Exacerbation frequency; SAFE, Saint George’s Respiratory Questionnaire (SGRQ) score, Air-Flow limitation and Exercise capacity; B-AE-D, Body-mass
index, Acute Exacerbations, Dyspnoea

As an example, Westeneng et al. recently performed
a meta-analysis with IPD from 14 European cohorts to
develop the ESCALC model for predicting survival in
patients with amyotrophic lateral sclerosis [75]. They
fitted a Royston-Parmar survival model in the entire
set of N = 11 475 patients and assumed a com-
mon baseline hazard and regression coefficients across
cohorts. Because the resulting model showed some
extent of mis-calibration upon validation, recalibrated
cohort-specific baseline hazard functions were reported
to enable researchers to tailor model predictions to
their population.
A particular advantage of IPD meta-analysis is that

it enables the direct evaluation and optimization of
a model’s generalizability across different settings and
populations through internal-external cross-validation
[64, 65, 76–78]. Briefly, this method iteratively omits
one study from the meta-analysis to externally validate
a model that is developed on the remaining studies.
This process is repeated several times, leading to mul-
tiple estimates of model performance, which in turn
can be summarized using aforementioned meta-analysis
methods [68, 73]. If performance appears adequate across
the available studies, the pooled data is used to develop
a final model. Otherwise, it flags heterogeneous study
populations where a developed model might not perform
well and signals that additional predictors or more
advanced modeling approaches (such as the inclusion of

non-linear terms) or updating strategies (such as recali-
bration) might be needed.
Internal-external cross-validation has, for instance,

been adopted during the development of ESCALC, a
prognostic model for predicting survival in patients with
amyotrophic lateral sclerosis. A one-stage approach was
used to estimate a Royston-Parmar model using IPD
from all but one study, after which its external valid-
ity was evaluated in the omitted study. The process was
repeated for all studies, providing 14 estimates of dis-
crimination and calibration performance. These estimates
were then pooled using a random effects meta-analysis,
yielding a summary c-statistic and calibration slope of,
respectively, 0.78 (95% PI 0.74 to 0.82) and 1.01 (95%
PI 0.83 to 1.18). These results suggest that the model
is likely to perform well across different settings and
populations.

Meta-analysis using IPD and AD
Validation of an existing prognostic model
Because IPD is commonly unavailable for one or more
relevant validation studies, researchers may consider a
two-stage meta-analysis to combine published estimates
of prediction model performance with those derived
from the IPD at hand. This approach has, however,
not extensively been studied yet, and further research is
also warranted to explore alternative strategies such as
hierarchical-related regression.
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Development of a new prognostic model
For many disease areas, there is an abundance of com-
peting models that predict similar outcomes in related
populations. Hence, rather than developing a new prog-
nostic model from scratch, it can be advantageous to
combine the AD of the existing models with the avail-
able IPD [79–82]. One approach is to summarize the
models’ regression coefficients together with the associ-
ations from the IPD [51, 52]. This is particularly useful
if the data are reasonably homogeneous, as synthesis
then yields a prognostic model that is applicable to
the “average” population. Conversely, when studies have
different baseline risk or predictor-outcome associa-
tions, some tailoring will often be necessary to ensure
that the new model remains sufficiently accurate in
local settings. In these situations, the IPD can be used
to adjust the existing models to specific populations
by adopting Bayesian inference [52], model averaging
[81], regression analysis [79, 81, 83, 84], or mixture
models [83].
For example, model averaging was recently applied to

combine the logistic EuroSCORE and EuroSCORE II
models for predicting short-term mortality in patients
undergoing coronary artery bypass graft surgery [82].
These models showed substantial mis-calibration in con-
temporary registry data and were therefore combined into
a single model that was tailored to the contemporary
population.

Summary points
Many prognostic model studies are based on relatively
small samples, leading to overfitting, poor generaliz-
ability, and over-optimism [58, 85]. Evidence synthe-
sis allows to increase the effective sample size and to
study more diverse settings and populations [62, 64].
Although synthesis is ideally based on IPD, a system-
atic review and meta-analysis of published data can ini-
tially be performed to study the (discrimination and cal-
ibration) performance of a previously developed model.
Estimates of between-study heterogeneity can then help
to reveal the extent of necessary improvements (e.g.,
local tailoring) and to calculate the probability that
the model(s) will be clinically useful in certain settings
[73, 86]. In general, a good model will have satisfactory
performance across different settings and populations.
However, if prediction model performance is poor over-
all or prone to substantial between-study heterogeneity,
retrieval of IPD may help to study causes of detrimen-
tal performance [66, 67, 87] and to establish whether
distinct models are needed for different settings and
populations [61].
When developing new or updating existing models, it is

important to consider heterogeneity in baseline risk, pre-
dictor effects, the linear predictor, and the absolute risk

predictions [61]. Risk predictions should be reasonably
similar across studies for a prediction model to be labeled
“generalizable,” and therefore, it is helpful to limit any
heterogeneity in baseline risk and predictor effects while
keeping the model’s overall performance sufficiently high.
Although internal-external cross-validation using IPD
from multiple studies may be helpful to achieve this, fur-
ther research is needed to integrate this endeavor in a
statistical framework.
Finally, for newly developed prediction models from

IPD-MA, it is helpful to provide any information that
allows for tailored predictions. For instance, appropri-
ate intercept terms can often be derived from the out-
come incidence, particularly if predictor variables have
been centered around their local means [77]. Similarly,
predictor effects can sometimes be tailored using infor-
mation about their particular measurement [88]. When
it remains unclear which parameter values (e.g., inter-
cept term) are most appropriate for predictions in new
populations, researchers may use the pooled estimates or,
preferably, integrate over the distribution of the random
effects [89].

Concluding remarks
In this paper, we have summarized and sign-posted
various methods for meta-analysis of prognostic fac-
tor and prognostic model studies. Because these pri-
mary prognosis studies may address very different types
of research questions and are often poorly reported,
advanced meta-analysis methods are usually needed to
provide (meaningful) summary estimates and under-
stand sources of between-study heterogeneity. Regardless,
researchers should not be daunted by their complexity, as
we have shown that many of these methods have been
implemented in traditional software packages and lead to
an improved understanding of prognosis-related research
questions.
For researchers embarking on a meta-analysis, the fol-

lowing issues should be taken into account. First, it
is important to ensure that available data are of suffi-
cient relevance and quality. It is recommended to con-
duct a systematic review of the literature and to har-
monize available IPD sets. Similarity of datasets can,
for instance, be improved by standardizing related mea-
surement scales [90], by adopting measurement error
correction methods [91–93], or by treating bias aris-
ing from measurement error as a missing data prob-
lem [90, 92, 94]. Second, when datasets are affected
by missing data, advanced imputation methods are
needed to ensure valid inferences [95–97]. Finally, it is
important to realize that not all meta-analysis meth-
ods have yet been rigorously assessed and that further
research is still needed to explore their potential areas of
application.
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